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Abstract. Most studies of gravel bed rivers present at least one bed surface grain size distribution, but there is almost

never any information provided about the uncertainty of the percentile estimates. We present a simple method for

estimating the confidence intervals about the grain size percentiles derived from standard Wolman or pebble count

samples of bed surface texture. Our approach uses binomial probability theory to generate confidence intervals for

all grain sizes in the distribution. We find that the standard sample size of 100 observations is associated with errors5

ranging from about ±15% to ±30%, which may be unacceptably large for many applications. In comparison, a sample

of 500 stones produces an uncertainty ranging from about±9% to ±18%. In order to help workers develop appropriate

sampling approaches that produce the desired level of precision, we present simple equations that approximate the

proportional uncertainty associated with the median size and the 84th percentile of the distribution as a function

of the sample size and the standard deviation of the distribution, assuming that the underlying distribution is log-10

normal. However, the true uncertainty of any sample can only be accurately estimated once the sample has been

collected, so these simple equations complement – but do not replace – the basic uncertainty analysis using binomial

probability theory.

1 Introduction

A common task in geomorphology is to estimate one or more percentiles of a particle size distribution, denoted15

Dp, where D represents the particle diameter (mm) and the subscript p indicates the percentile of interest. Such

estimates are typically used in calculations of flow resistance, sediment transport, and channel stability; they are

also used to track changes in bed condition over time, and to compare one site to another. In fluvial geomorphology,

commonly used percentiles include D50 (which is the median) and D84.

Various methods for measuring bed surface sediment texture have been reviewed by previous researchers (Church20

et al., 1987; Bunte and Abt, 2001b; Kondolf et al., 2003). While some approaches have focused on using qualitative

approaches such as facies mapping (e.g. Buffington and Montgomery, 1999), or visual estimation procedures (e.g.

Latulippe et al., 2001), the most common means of characterizing the texture of a gravel bed surface is still the

cumulative frequency analysis of some version of the pebble count (Wolman, 1954; Leopold, 1970; Kondolf and Li,

1992; Bunte and Abt, 2001a). Pebble counts are sometimes completed by using a random walk approach, wherein the25
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operator walks along the bed of the river, sampling those stones that are under the toe of each boot and recording

the b-axis diameter. In other cases, a regular grid is superimposed upon the sedimentological unit to be sampled,

and the b-axis diameter of all the particles under each vertex is measured. In still other cases, computer-based

photographic analysis identifies the b-axis of all particles in an image of the bed surface. Data are typically reported

as cumulative grain size distributions for 0.5φ size intervals (e.g., 8 - 11.3 mm, 11.3 to 16 mm, 16 - 22.7 mm, 22.75

- 32 mm, and so on), from which the grain sizes corresponding to various percentiles are extracted. Attempts to

characterize the uncertainty of this approach have focused on estimating the uncertainty of D50, and have typically

assumed that the underlying distribution is log normal (Hey and Thorne, 1983; Church et al., 1987; Bunte and Abt,

2001b). Attempts to characterize the uncertainty associated with other percentiles besides the median have relied

on statistical analysis of extensive field data sets (Marcus et al., 1995; Rice and Church, 1996; Green, 2003; Olsen10

et al., 2005), and do not provide an easy means of calculating the sample size required to achieve a given confidence

level.

Operator error and the technique used to randomly select bed particles have frequently been identified as important

sources of uncertainty (Hey and Thorne, 1983; Marcus et al., 1995; Olsen et al., 2005; Bunte et al., 2009), but the

largest source of uncertainty in many cases is likely to be sampling variability, which is a function of sample size.15

Unfortunately, the magnitude of the confidence interval is seldom calculated and/or reported, and the implications

of this uncertainty are – we believe – generally under-appreciated. To address this issue, we believe that it should

become standard practice to calculate and graphically present the confidence intervals about surface grain size

distributions.

The objective of this note is introduce a robust, distribution-free approach to computing confidence intervals20

for percentile estimates. We then use this approach to demonstrate that the higher percentiles, such as D84, are

subject to substantial uncertainty for typically used sample sizes, and that this uncertainty translates into significant

uncertainty in estimates of sediment entrainment thresholds. We then provide recommendations regarding sample

sizes for estimating particle size percentiles.

2 Statistical basis25

The key to our approach is that the estimation of any grain size quantile Dp can be treated as a binomial experiment

during which the b-axis diameter of n particles is measured, some of which will be smaller than the true value of Dp

for the population of grains on the bed, and some of which will be larger. For repeated samples from the population,

the number of measured stones that will be smaller than the true value of Dp will vary about a mean value n ·p, just

as the number of heads observed during n tosses of a fair coin will vary about a mean value of 0.5n. The binomial30

distribution can be used to derive confidence intervals for any estimate of Dp for a sample that can be expected to

contain the true value of Dp for the entire population.
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Figure 1. A grain size distribution from a stream table experiment based on a sample size of 200 observations. Blue circles

indicate individual grain size measurements, and the red line is the cumulative frequency distribution for binned data using

the standard 0.5 φ bins. Dashed lines indicate the interpolation procedure for translating the estimated confidence intervals

for the binned data as percentiles (i.e., the horizontal lines) into the corresponding grain size quantiles (i.e., the vertical lines)

that bound the estimate of the D84 (represented as black solid lines).

In order to illustrate our approach for estimating confidence intervals, we will use grain size data from a recent

laboratory experiment, comprising 200 measurements of b-axis diameters; since we preserve each measurement rather

than grouping them into size classes, the data can be treated as a binomial experiment, analogous to flipping a coin,

wherein each measurement represents the outcome of a single coin flip. These data are sorted in rank order and then

used to compute the quantiles of the (Fig. 1). The difference in granularity between the raw data and the standard5

binned data is illustrated on the figure by adding a cumulative frequency curve based on binned data using the

standard 0.5φ size classes.

A variety of approaches has been proposed in the statistical literature for estimating quantiles from a sample

(Hyndman and Fan, 1996). The differences among methods are greatest for smaller sample sizes, and decrease as

n increases. The first step in all approaches is to sort the measured values from lowest to highest and use these to10

define order statistics d(i) such that d(1) ≤ d(2) ≤ ...≤ d(n), where, for example, d(1) is the minimum value of di.

2.1 Exact solution for a confidence interval

Suppose we wish to compute a specific quantile, say Dp, from our sample of sediment particles. The probabilities of

drawing a specific number of particles, k, that are smaller than Dp (i.e., d(k) <Dp and d(k+1) >Dp) can be computed

from the binomial distribution:15

Pr(k,n,p) = pk(1− p)n−k n!
k!(n− k)!

(1)
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To define a confidence interval, we first specify the confidence level, usually expressed as 100 · (1−α)%. For 95%

confidence, α= 0.05. Following Meeker et al. (2017), we then find lower and upper values of the order statistics

(d(l) and d(u), respectively) such that the coverage probability (Pc) is as close as possible to 1−α , but no smaller.

Coverage probability is defined as:

Pc =B(u− 1,n,p)−B(l− 1,n,p) (2)5

where B(j,n,p) is the cumulative distribution function for j ”successes” in n trials for probability p. The goal,

then, is to find integer values l and u that satisfy the condition that Pc ≥ 1−α, with the additional condition that

l and u be approximately symmetric about the expected value of k, n ·p. The lower and upper confidence limits are

then given by d(l) and d(u).

We have created an R function (QuantBD) that determines the upper and lower confidence limits, and returns the10

coverage probability, which is included in the supplementary material for this paper. Our function is based on a

script published online by W. Huber 1, which follows the approach described in Meeker et al. (2017). For n= 200,

p= 0.84 and α= 0.05 (i.e., 95% confidence level), l = 159 and u= 180, with a coverage probability (0.953) that is

only slightly greater than the desired value of 0.95. This implies that the number of particles in a sample of 200

measurements that would be smaller than the true D84 should range from 159 particles to 180 particles, 19 times out15

of 20. This in turn implies that the true D84 could correspond to sample estimates ranging from the 80th percentile

(i.e., 159/200) to the 90th percentile (i.e., 180/200). We can translate the bounds into corresponding grain size values

using our ranked grain size measurements: the lower bound of 159 corresponds to a measurement of 2.7 mm, and

the upper bound corresponds to a measurement of 3.7 mm.

2.2 Approximate solution for equal-area tails20

One disadvantage of the exact solution described above is that the areas under the tails differ, as evident from Fig.

2. Meeker et al. (2017) described an alternative approach based on interpolation for finding lower or upper limits

for one-sided intervals. This approach can be applied to find two-sided intervals by finding one-sided intervals, each

with a confidence level of 1−α/2. By interpolating between the integer values of k, we can find real numbers for

which the binomial distribution has values of α/2 and 1−α/2, which we refer to as le and ue. The corresponding25

grain sizes can be found by interpolating between measured diameters whose ranked order brackets the real numbers

le and ue.

The values of le and ue are indicated on Fig. 2 by dashed vertical lines. As can be seen, the values of l and u gen-

erated using the equal tail approximation are shifted to the left of those found by the exact approach. Consequently,

the approximate confidence limits are also shifted to the left of the exact approach. The corresponding grain sizes30

representing the confidence interval are 2.7 mm and 3.6 mm, which are similar to the exact solution presented above.
1https://stats.stackexchange.com/q/284970!, last accessed on 19 September, 2019
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Figure 2. Binomial distribution values for n= 200 and p= 0.84, displaying the range of k values included in the coverage

probability. The dark grey bars indicate which order statistics are included in the confidence interval, and light grey indicates

order statistics that lie outside the interval. The vertical dashed lines indicate confidence limits computed by an approximate

approach that places equal area under the two tails.

2.3 Approximate solution for binned data

We have adapted the approximate solution described above to allow estimation of confidence limits for binned data,

which is accomplished by our R function called WolmanCI. We use the equal area approximation of the binomial

distribution to compute upper and lower limits of k, and then transform these ordinal values into percentiles by

normalizing by the number of observations. Using our sample data, the ordinal confidence bounds le = 157.03 and5

ue = 177.36 thus become the percentiles 79% and 89%, respectively.

To estimate the confidence limit in terms of grain sizes, we simply interpolate from the empirical cumulative

frequency distribution based on the classed sediment diameters to find the corresponding quantiles. Note that the

linear interpolation is applied to log2(d), and that the interpolated values are then transformed to diameters in mm.

This interpolation procedure is represented graphically on Fig. 1. The dashed horizontal lines represent percentile10

values of le/n and ue/n, while the solid horizontal line represents the percentile of interest (i.e., p= 0.84). Our binned

sample data yield a confidence interval for the D84 that ranges from 2.7 mm to 3.5 mm.

Clearly, the binomial probability approach requires that the sample distribution be known in order to calculate

the confidence intervals in units of length. While this is problematic when attempting to predict the statistical power

associated with a given sample size, n, before actually collecting the sample, it is possible to use any previously15

collected distribution to calculate and plot confidence intervals of the bed surface grain sizes, provided the number

of observations used to generate the distribution is known. The approach can also be used to estimate the confi-

dence intervals about any previously published grain size distribution, and to assess whether or not a given set of

distributions is statistically different or not.
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Figure 3. All grain size distributions from a stream table experiment based on a sample size of about 400 observations. The

estimated grain sizes are shown, along with the 95% confidence intervals.

3 Confidence interval testing

The approximate method presented in the preceding section can easily be tested numerically by sub-sampling a

large population of observations, determining the distribution of resulting percentile size estimates produced by the

sub-samples, and comparing it to the confidence interval based on binomial theory. We have eight samples of about

400 observations each from a stream table experiment. Based on the overlap in confidence intervals for the eight5

samples, the distributions do not appear to be statistically different (see Fig. 3). Therefore, the data have been

pooled to form a single data set of 3411 observations. For the purposes of our uncertainty analysis, we let these 3411

observations define the population of interest and then take repeated, random sub-samples (with replacement) of

100 observations from the larger data set. For each sub-sample, we generate the cumulative frequency distribution

and then estimate the bed surface D16, D50, and D84.10

As seen in Fig. 4, the spread of the estimates from the repeated sub-sampling of the data set is generally sim-

ilar to the confidence intervals based on binomial theory; the predicted confidence interval containing 50% of the

observations (shown in blue) corresponds approximately to the upper and lower quartiles of the box plots, and the

95% confidence interval corresponds approximately to the overall spread of the numerical estimates. A more direct

comparison shows that the calculated 50% confidence intervals contain 54% of the grain size estimates from the15

sub-samples, while the 95% confidence intervals contain 97% of the estimates.

The close match between the confidence intervals calculated from binomial theory and the distribution of per-

centiles based on sub-sampling supports the validity of the proposed approach for computing confidence limits about

the cumulative grain size distribution. Since these confidence limits are straightforward to calculate, we argue that

it should be standard practice to plot them on all grain size distribution graphs, particularly those that purport to20

show a difference between two distributions.
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Figure 4. The box-plots represent the distribution of estimates for the D16, D50, and D84 of the same bed surface, based

on repeatedly selecting 100 measurements from the larger population of observations. The 99% confidence interval estimated

using binomial theory is shown in red, the 50% confidence interval is shown in blue, and the ‘true’ percentile for the population

is shown in black, for comparison.

4 Reassessing previous analyses

In order to demonstrate the importance of understanding the uncertainty, we have reanalyzed the results of sev-

eral previous papers that have compared bed surface texture distributions, but which have not considered uncer-

tainty associated with sampling variability. In most cases, these re-analyses confirm the authors’ interpretations, and

strengthen them by highlighting which parts of the distributions are different and which are similar, thus allowing for5

a more nuanced understanding. In some cases, however, the re-analyses demonstrate that the observed differences do

not appear to be statistically significant, and suggest that the interpretations and explanations of those differences

are not supported but the authors’ data. In either case, we believe that adding information about the confidence

intervals is a valuable step that should be included in every surface grain size distribution analysis.

Figure 5 plots data published by Kondolf (1997), which were used to compare the bed surface grain size distribution10

estimated using a pebble count method, and from a truncated bulk sample of the bed surface. Re-plotting the analysis

by Kondolf (1997) demonstrates that the coarse tail (i.e., Di > 22.6 mm) of their bulk sample of the bed surface

is statistically similar to the coarse end of the distribution for a pebble count, once the sediment finer than 4 mm

is excluded from the analysis of the bulk sediment. Interestingly, the finer half of the two distributions appear to

be statistically different. While Kondolf (1997) reached essentially the same conclusion, the use of confidence bands15

about the distributions highlights the statistical similarity of the coarse tail, and can be used to suggest that the

transition occurs at a grain size of about 22.6 mm.

The data published by Bunte et al. (2009) include pebble counts of about 400 stones for different channel units

in two mountain streams (see Fig. 6). Adding the confidence bands to the distributions emphasizes the advantages

of taking larger sample sizes, since the confidence bands are narrower than those for a sample of only 100 stones20
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Figure 5. Comparing the bulk surface sample and pebble count distributions, published by Kondolf (1997, their Fig. 3). Panel

A shows the traditional grain size distribution representation. Panel B uses the confidence band calculated for the pebble

count to highlight where the distributions are statistically similar and where they are different.
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Figure 6. Comparing pebble counts from different channel units. Panel A presents data reported by Bunte et al. (2009) for

Willow Creek. Panel B presents data for North St. Vrain Creek.

(e.g., Fig. 5). It also emphasizes that the key difference for the bed texture in pools and in runs or riffles is the

fraction of sediment less than about 22.6 mm; the distributions of sediment coarser than this are not statistically

different for either stream. This observation suggests that the differences in bed surface texture are likely due to the

deposition of finer bed-load sediment in pools on the waning limb of the previous flood hydrograph, and that the bed

surface texture of both kinds of mainstem units during flood events could be quite similar. The analysis also clearly5

demonstrates that size distributions of the exposed channel bars in these two streams are statistically different from

both the pools and the runs/riffles. From these plots we can conclude that the bed roughness (which is typically

indexed by the bed surface D50 or by sediment coarser than that) is similar for the mainstem units (i.e., pools,
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Figure 7. Comparing pebble counts of the same bed surface by different operators. The data plotted were published by

Bunte and Abt (2001a). Panel A shows the traditional grain size distribution representation. Panel B uses the confidence

band calculated for the pebble count to demonstrate that the two distributions are not statistically different.

and runs/riffles), but that exposed bar surfaces in these two streams are systematically less rough. These kinds

of inferences could have important implications for decisions about the spatial resolution of roughness estimates

required to build 2D or 3D flow models; it is also possible to reach the same conclusions based on the original data

plots in Bunte et al. (2009), but the addition of confidence bands supports the robustness of the inference.

A more fundamental motivation for plotting the binomial confidence bands is illustrated in Fig. 7, which compares5

the bed surface texture estimated by two different operators using the standard heel-to-toe technique to sample

more than 400 stones from the same sedimentological unit. These data were published by Bunte and Abt (2001a)

(see their Fig. 7). Based on their original representation of the two distributions (Fig. 7, Panel A), Bunte and Abt

(2001a) concluded that

“operators produced quite different sampling results . . . operator B sampled more fine particles and fewer10

cobbles . . . than operator A and produced thus a generally finer distribution.”

However, once the confidence bands are plotted (Fig.7, Panel B), it is clear that the differences do not appear

statistically significant. A similar analysis of the heel-to-toe sampling method and the sampling frame method

advocated by Bunte and Abt (2001a) shows that the distributions produced by the two methods are not statistically

different, either. In both cases, the uncertainty associated with sampling variability appears to be greater than any15

difference between operators or between sampling methods, and thus one cannot claim these differences as evidence

for statistically significant effects. It may be the case that there are significant differences among operators or between

sampling methods, but larger sample sizes would be required to reduce the magnitude of sampling variability in order

to identify those differences.
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Figure 8. Comparing sampling methods for the same bed surface and operator. The data plotted were published by Bunte

and Abt (2001a), and were collected by operator B. Panel A shows the traditional grain size distribution representation. Panel

B uses the confidence band calculated for the pebble count to demonstrate that the two distributions do not appear to be

statistically different.

Indeed, Hey and Thorne (1983) found that operator errors were difficult to detect for small sample sizes (wherein

the sampling uncertainties were comparatively large), but became evident as sample size increased, so the issue at

hand is not whether there are important differences between operators, but whether the differences in Fig. 7 are

statistically significant. Interestingly, Hey and Thorne (1983) were able to detect operator differences at sample

sizes of about 300 stones, whereas Bunte and Abt (2001a) did not detect statistical differences for samples of about5

400 stones, indicating either that Hey and Thorne (1983) had larger operator differences than did Bunte and Abt

(2001a), or smaller sample uncertainties due to the nature of the sediment size distribution.

5 Determining sample size

Our method for estimating uncertainty requires only the cumulative distribution and the number of measurements

used to construct the distribution. Therefore, confidence intervals can be constructed and plotted for virtually all10

existing surface grain size distributions (provided that the number of stones that were measured is known, which is

almost always the case), and future sampling efforts need not be modified in any way in order to take advantage of

our method.

The actual uncertainty of an estimated grain size percentile cannot be predicted using our method before the

cumulative distribution has been generated. This problem is well recognized, and has been approached in the past15

by making various assumptions about the distribution shape (Hey and Thorne, 1983; Church et al., 1987; Bunte and

Abt, 2001a, b), or using computational approaches (Marcus et al., 1995; Rice and Church, 1996; Green, 2003; Olsen

et al., 2005), but in all cases it is still necessary to know something about the spread of the distribution – regardless
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Figure 9. Estimated uncertainty for estimates of D50 (Panel A) and D84 (Panel B) are plotted against sample size. Curves

were generated for all the bed surface samples analysed in this paper (Kondolf et al., 2003; Bunte and Abt, 2001a; Bunte

et al., 2009), and for bed surface samples collected by BGC Engineering and students from The University of British Columbia

(unpublished data). Vertical lines highlight the range of uncertainties for sample sizes of 200 and 500 stones.

of its assumed shape – in order to predict the level of uncertainty associated with a given sample size. It is perhaps

the difficulty of predicting sample uncertainty that has led to the persistent use of the standard 100-stone sample.

5.1 Uncertainty based on field data

Here, we demonstrate the effect of sample size on uncertainty. We begin by calculating the uncertainty of estimates

for D50 and D84 for all the surface samples used in this paper, for eight samples collected by BGC Engineering from5

gravel bed channels in the Canadian Rocky Mountains, and for samples from two locations on Cheakamus River,

British Columbia, collected by undergraduate students from the Department of Geography at The University of

British Columbia. Uncertainty (ε) is expressed as a proportion of the estimate, calculated as follows:

ε= 0.5
(
Dupper −Dlower

Dest

)
(3)

where Dupper is the upper 95% confidence bound calculated for a given sample size, Dlower is the lower confidence10

bound, and Dest is the estimated size for the percentile of interest. For the sake of simplicity, we have assumed that

uncertainty is symmetrically distributed about Dest, but this is not true for all distribution shapes. Therefore, we

can be approximately 95% confident that the interval Dest[1± ε] includes the true value of the percentile.

Fig. 9 presents the range of uncertainties for various gravel bed surface samples, including those shown in Figs.

(3), (5), (6), and (7). For a sample size of 100 stones, the uncertainties are relatively large, with a mean uncertainty15
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Figure 10. Estimated uncertainty for estimates of D50 (Panel A) and D84 (Panel B) are plotted against sample size for a

simulated set of log normal surface distributions with a range of standard deviations. The markers are color-coded by standard

deviation. The bounding curves for SDlog = 0.5 φ and SDlog = 2.0 φ are shown for reference, calculated using Eq. (5) and

Eq. (7).

across all of the distributions of ±25% for D50 and of ±21% for D84. The mean uncertainty drops to ±18% for D50

and ±15% for D84 for a sample of 200 stones, and to ±11% (D50) and ±9% (D84) for 500 stones.

5.2 Uncertainty for Log-normal distributions

We can also approach this problem by assuming that bed surface texture distributions are approximately log-

normal, but have varying degrees of gradation, indicated by a standard deviation expressed in φ units (SDlog). As5

a point of comparison, if we estimate the SDlog for the samples analyzed in the previous section by assuming that

SDlog = log2D84− log2D50, then SDlog ranges from 0.8 to 1.8, with a median value of 1. For those samples, the

largest values of SDlog were associated with samples from channels on steep gravel bed fans and on bar top surfaces,

while samples characterizing the bed of typical gravel bed streams had values close to the median value.

We generated a relation between uncertainty and sample size by first simulating 3000 log-normal grain size dis-10

tributions with D50 ranging from 22.6 mm to 90.5 mm, n ranging from 51 to 999 stones, and SDlog ranging from

0.5 φ to 2 φ. We then used least-squares regression to fit models of the form

ln(ε) = a ·n+ b ·SDlog + c (4)

where a, b, and c are the estimated coefficients. The empirical model describing the uncertainty of D50 has an

adjusted R2 value of 0.95, with the variable n explaining about 47% of the total variance, and SDlog explaining 47%15

of the variance. The model for D84 has an adjusted R2 value of 0.9 with the variables n and SDlog explaining the

similar amounts of the total variance (46% and 45%, respectively).
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Table 1. Coefficient values for estimating uncertainty in D50 and D84 as a function of SDlog and sample size (n) using

Eqs. (5) and (7)

Coef. 0.75φ 1.00φ 1.25φ 1.50φ 1.75φ 2.00φ

A 0.278 0.486 0.694 0.901 1.109 1.317

B 0.531 0.742 0.952 1.163 1.374 1.584

After back-transforming from logarithms, the equation describing the uncertainty in D50 can be expressed as:

ε50 =A ·n−0.498 (5)

where the coefficient A is given by:

A= exp(−0.346 + 0.832SDlog) (6)

The equation for estimating uncertainty in D84 are:5

ε84 =B ·n−0.51 (7)

where B is given by:

B = exp(−0.1 + 0.842SDlog) (8)

Table 1 provides values of A and B for a range of standard deviations.

6 Practical implications of uncertainty10

The implications of uncertainty can be important in a range of practical applications. Here, we translate uncertainty

in grain size percentiles into uncertainty in the critical discharge for significant morphologic change using data for

Fishtrap Creek, a gravel bed stream in British Columbia that has been studied by the authors (Phillips and Eaton,

2009; Eaton et al., 2010a, b). The estimated bed surface D50 for Fishtrap Creek is about 55 mm, which we estimate

becomes entrained at a shear stress of 40 Pa, corresponding to a discharge of about 2.5 m3s−1(Eaton et al., 2010b).15

If we assume that significant channel change can be expected when D50 becomes fully mobile (which occurs at about

twice the entrainment threshold), then we would expect channel change to occur at a shear stress of 80 Pa, which

corresponds to a critical discharge of 8.3 m3s−1, based on the stage-discharge relations published by Phillips and

Eaton (2009).

Since we used the standard technique of sampling 100 stones to estimate D50 and since the standard deviation of20

the bed surface distribution is about 1.0φ, we can assume that the uncertainty will be about ±16%, based on Eqs.

(5 and 6), which in turn suggests that we can expect the actual surface D50 to be as small as 46 mm or as large as
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64 mm. This range of D50 values translates to shear stresses that produce full mobility that range from 67 Pa to 93

Pa. This in turn translates to critical discharge values for morphologic change ranging from 5.9 m3s−1to 11.1 m3s−1,

which correspond to return periods of about 1.5 years and 7.2 years, based on the flood frequency analysis presented

in Eaton et al. (2010b). Specifying a critical discharge for morphologic change that lies somewhere between a flood

that occurs virtually every year and one that occurs about once a decade, on average, is of little practical use, and5

highlights the cost of relatively imprecise sampling techniques.

If we had taken a sample of 500 stones, we could assert that the true value of D50 would likely fall between 51 mm

and 59 mm, assuming an uncertainty of ±7%. The estimates of the critical discharge would range from 7.2 m3s−1

to 9.5 m3s−1, which in turn correspond to return periods of 2 years and 4.1 years, respectively. This constrains

the problem more tightly, and is of much more practical use for managing the potential geohazards associated with10

channel change.

Operationally, it takes about 20 minutes to sample 100 stones from a typical gravel bed river, and a bit over

an hour to sample 500 stones, so the effort required to sample the larger number of stones is far from prohibitive.

Furthermore, computer-based analyses using photographs of the channel bed may be able to identify virtually all

of the particles on the bed surface, and generate even larger samples. The statistical advantage of the potential15

increase in sample size are obvious, and justify further concerted development of these computer-based methods, in

our opinion.

7 Conclusions

Based on the statistical approach presented in this paper, we developed a suite of functions in the R language

that can be used to estimate the uncertainty of any percentile in a cumulative grain size distribution (see the20

supplemental material for the source code). The approach uses binomial theory to generate uncertainty estimates

for any cumulative grain size distribution based on pebble count data, and requires only that the total number of

stones used to generate the distribution is known. Approaches were developed for cases in which individual grain

sizes are known and in which data are binned (e.g., into φ classes).

By estimating the uncertainty for each percentile in the distribution, the uncertainty can be displayed graphically25

as a polygon surrounding the distribution estimates. When comparing two different distributions, this means of

displaying grain size distribution data highlights which distributions appear statistically different, and which do not.

Our analysis of various samples collected in the field demonstrates that the uncertainty depends on the shape

of the distribution, with more widely graded sediments having higher uncertainty than narrowly graded ones. Our

analysis also suggests that typical gravel bed river channels have a similar gradation, and that the typical uncertainty30

of the D50 varies from ±25% for a sample size of 100 observations to about ±11% for 500 observations.

When designing a bed sampling program, it is useful to estimate the precision of the sampling strategy and to

select the sample size accordingly; to do so, we must first assume something about the spread of the data (assuming a

14

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-4
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 13 February 2019
c© Author(s) 2019. CC BY 4.0 License.



log-normal distribution), and then verify the uncertainty after collecting the samples. Simple equations for predicting

uncertainty (as a percent of the estimate) are presented here to help workers select the appropriate sample size for

the intended purpose of the data.

Code and data availability. Both the analysis code and the data used to create all of the figures in this paper are available online
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